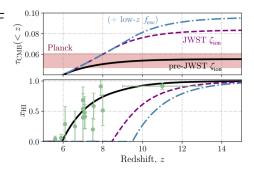
Chasing the beginning of reionization in the JWST era

Christopher Cain

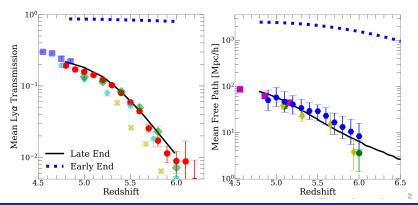
School of Earth & Space Exploration Arizona State University

40th IAP Symposium, Paris, France

Some collaborators:

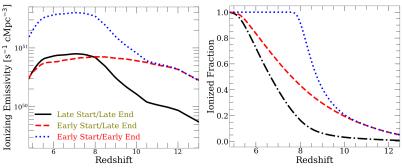

Anson D'Aloisio (UCR), Julian Muñoz (UTA), Rogier Windhorst (ASU), Rolf Jansen (ASU)

Can galaxies drive cosmic reionization?


- Recent work (Munoz+24) suggest ionizing output of galaxies may have been enough to re-ionize the universe by $z \sim 8-9$
- Based on JWST UVLF and measurements of $\xi_{\rm ion}$ (Simmonds+24), and $f_{\rm esc}$ inferred from UV slopes (Chisholm+22)

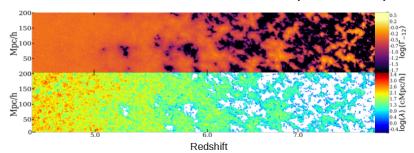
Seems like yes!

Why is late reionization ($z_{\text{end}} < 6$) necessary?


- I Mean transmission of Ly α at $z \le 6$ early end = IGM too transmissive!
- 2 Mean free path to ionizing photons

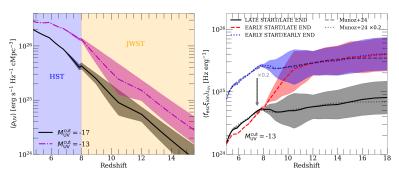
How can we get rid of photons?

Two ways:


- **1** Across all redshifts \rightarrow Late Start/Late End
- 2 At lower redshifts only \rightarrow Early Start/Late End

Which one is favored by observations?

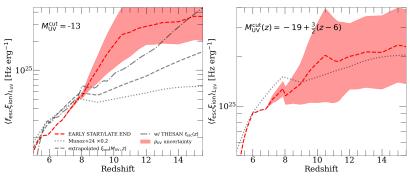
Simulations of Reionization with FlexRT


- Adaptive ray-tracing RT in a cosmological volume $(N_{\rm RT}=200^3,~L_{\rm box}=200~h^{-1}{\rm Mpc})$
- Sub-grid opacity model based on high-res hydro/RT sims
- Both late-ending models are calibrated to reproduce Ly α forest mean transmission at 5 < z < 6 (Bosman+22)

200

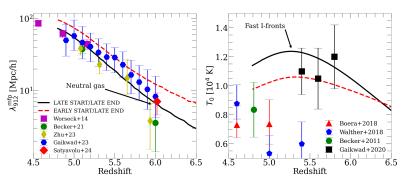
UVLF/Ionizing properties of galaxies

- JWST UVLF (Adams/Donnan+24) evolves rapidly at z > 8
- Scaled down Munoz+24 model → late start/late end
- lacktriangle Early start/late end $ightarrow \sim 10 imes$ evolution in $\langle \mathit{f}_{
 m esc} \xi_{
 m ion}
 angle$

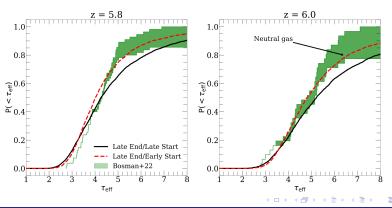


Early start needs steeper evolution than observations suggest

Can galaxies accommodate an early start?


- **E**xtrapolation of ξ_{ion} measurements to high z/faint galaxies?
- **E**volution in $f_{\rm esc}$?
- Evolution in $M_{\text{UV}}^{\text{cut}}$ (feedback)??

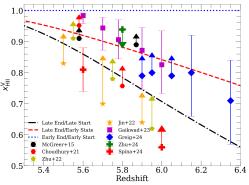
Certainly possible!


QSO Observations at 5 < z < 6

- The ionizing photon mean free path prefers a late start
- The thermal history of the IGM prefers an early start

QSO Observations at 5 < z < 6

- **Distribution** of forest optical depths sensitive to $x_{\rm HI}$
- An early start is preferred

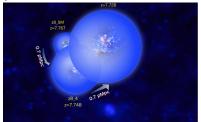


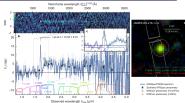
QSO Observations at 5 < z < 6

Constraints on the neutral fraction at z < 6.5 from dark gaps, dark pixels, QSO damping wings, and the forest opacity

 Recent forest damping wing constraints (Zhu+24, Spina+24) disfavor early end

Some limits prefer an early start

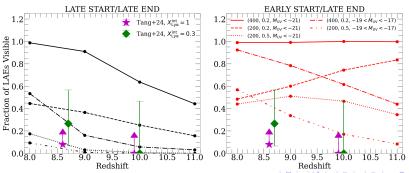



Ly α emitters at $z \geq 8$

Several recent detections (Larson+22, Bunker+23, Witstock+24)

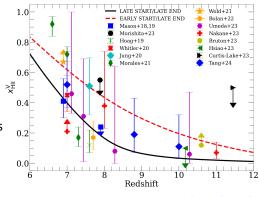
- Ly\alpha requires some ionization around galaxies to escape damping wing absorption
- Most extreme example: JADES-GS-z13-1-LA at z = 13

Figures: Tilvi+20, Witstok+24



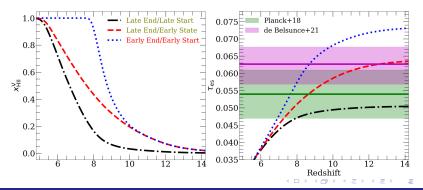
How does LAE visibility evolve?

- $lue{}$ Recent measurements (Tang+24) show sharp drop to $z\sim 10$
- We can estimate visibility in simulations for LAEs with different properties (detection criteria, velocity offset, $M_{\rm UV}$)
- Low visibility → late start

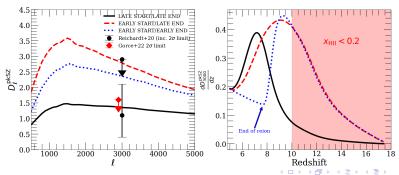


Neutral fraction measurements?

- Can infer x_{HI} with LAE detections and/or damping wings
- Measurements at 7 < z < 8 do not favor late or early start
- Very few constraints at z > 8


Inconclusive

Christopher Cain


What about the CMB?

- Both late-ending models are 1σ -consistent with either Planck+18 or de Belsunce+21 measurements of $\tau_{\rm CMB}$
- No clear preference

What about the CMB?

- A late start is clearly favored by SPT measurement of the pkSZ effect (Reichardt+21)
- Much of the power in the early start case comes from reionization's beginning ($x_{\rm HI} < 0.2$)

Do observations prefer a late or early start?

Category	Probe	Late Start	Early Start
CMB	$ au_{ m es}$	No Pref.	No Pref.
	Patchy kSZ	Preferred	Not preferred
High-z Galaxies	$UVLF/\xi_{\mathrm{ion}}/f_{\mathrm{esc}}$	Preferred	Not preferred
	LAEs at $z > 8$	Preferred	Not preferred
	$x_{\rm HI}(z>6.5)$	No Pref.	No Pref.
z < 6.5 QSOs	$\langle \mathcal{F}_{\mathrm{Ly}lpha} angle$	No Pref.	No Pref.
	$P(< au_{ ext{eff}}^{50})$	Not preferred	Preferred
	Mean Free Path	Preferred	Not preferred
	Thermal History	Not preferred	Preferred
	$x_{\rm HI}(z < 6.5)$	Not preferred	Preferred

Do observations prefer a late or early start?

Category	Probe	Late Start	Early Start
CMB	$ au_{ m es}$	No Pref.	No Pref.
	Patchy kSZ	Preferred	Not preferred
High-z Galaxies	$UVLF/\xi_{\mathrm{ion}}/f_{\mathrm{esc}}$	Preferred	Not preferred
	LAEs at $z > 8$	Preferred	Not preferred
	$x_{\rm HI}(z>6.5)$	No Pref.	No Pref.
z < 6.5 QSOs	$\langle \mathcal{F}_{ ext{Ly}lpha} angle$	No Pref.	No Pref.
	$P(< au_{ ext{eff}}^{50})$	Not preferred	Preferred
	Mean Free Path	Preferred	Not preferred
	Thermal History	Not preferred	Preferred
	$x_{\rm HI}(z < 6.5)$	Not preferred	Preferred
Final Score	All Data	Preferred	Not preferred

Conclusions

- An early (z > 6) end to reionization is incompatible with 5 < z < 6 QSO observations
- Late or early start? Different observations (seem to) prefer difference scenarios
- A late start is preferred by results from multiple data sets, making it the (mildly) preferred scenario overall
- New JWST observations may have complicated our understanding of reionization!

